Seven launch their lightest bike ever – titanium carbon love fest


US bespoke brand Seven Cycles are launching a new road bike with a carbon fibre and titanium frame that’s their lightest ever.

The 622 SLX weighs 1kg in a 54cm frame size. It uses rider-specific carbon tubes joined using titanium lugs that are designed to be stiff and durable as well as adding a whole lot of style.

Seven Cycles already make frames that blend carbon fibre and titanium – their Elium SL and Elium SLX road models, for example – but they reckon the 622 sets new standards in that it retains the feel of a metal bike but in a lighter weight.

“We hear a lot of riders who love the road feel of our metal bikes wanting a lighter option, and we hear a lot of the people riding our carbon bikes express an interest in getting more road feel,” said Seven Cycles founder Rob Vandermark. “This bike is really for them. We wanted to maximize the positive characteristics of each material, and we wanted to do something with an almost sculptural aesthetic.”

We have to agree that the 622 is a good looking bike, those beautifully shaped lugs lending a classy air that distinguishes it from the crowd.

The 622 name refers to the materials used, six being the atomic number for carbon and 22 being titanium. It’s available as Seven’s ‘custom kit’ option which is a full bespoke service. You visit an approved retailer and order a bike that is sized specifically for you and comes with features of your choice. You get to choose the degree of drivechain stiffness you get, the amount of vertical compliance, the speed of the handling and so on.

Of course, a bespoke bike like this is never going to be cheap. You’re looking at £4,950 for the frameset. Youch! And then you’re going to have to factor in a lot more cash for the build – you’re not going to want to deck it out in kit from the parts bin.

This one may be for sale too – brooks b17 champion special


It may be too special …

An aesthetic improvement to the B17 standard, with large copper rivets, chamfered sides, and copper rails. Still a classic touring saddle though. Like all leather saddles there is a break-in period, but the reward is well worth the effort, it has a smooth top, with 3 small holes for ventilation, chamfered skirts, large copper rivets, copper rails, with quality saddle bag loops on the frame.
http://www.sjscycles.co.uk/brooks-b17-champion-special-leather-saddle-with-copper-rails-prod21478/?src=froogle

£85 new + shipping

SOLD – to my lovely pal Tom

What bits of my legs are used for cycling


Speaking to cousin colin the other day i was speaking about the benefits of riding with clipless pedals. I guessed that he might be losing up to a 1/3rd of his power by just using platform pedals … that was a guess so i delved a bit deeper …

this from triathlon resource

Improving your pedal stroke efficiency is one of the most effective ways to improve cycling performance.  The human body was made to walk and run, not to pedal a bicycle.  I have performed or supervised over 6,000 VO2 Max tests.  The results clearly and consistently indicate that pedal stroke efficiency is a key limiting factor for performance athletes.  For example, an elite cyclist may produce 20% greater wattage than an intermediate, but consume only 8% more oxygen to do so.  In other words, the elite is only 8% fitter and the remaining 12% increase in wattage may be attributed to more efficient pedal stroke mechanics.

On a flat road, the momentum of the rider’s weight moving at a fairly high speed will pull him through dead spots in his pedal stroke, so on flat roads a powerful rider with excessive dead spots in his pedal stroke can “coast” through those dead spots.  At the slower speeds cyclists use to climb hills, the rider’s momentum is not so great a factor.  Gravity tugs continually and, without momentum to smooth over the dead spots, riding speed literally slows between each pedal stroke.  Much of the power generated by each pedal stroke is then wasted on accelerating back to the original speed instead of going faster up the hill.  If you are stronger on flat rides than on hilly rides, even when taking bodyweight into account, your pedal stroke probably needs some work.

Cyclists are often told to develop a circular pedal stroke.  However, the human body cannot produce a perfect 360-degree pedal stroke and even the most efficient cyclists fail to create power anywhere close to evenly throughout the circle.  Our research has shown that the greatest pedaling efficiency occurs by imaging pedaling triangles instead of circles.  Mentally breaking the pedal stoke down into the downstroke, the backstroke, and the upstroke and attempting to create power in three straight lines, produces the closest to a circular pedal stroke that a cyclist can create.  It also yields the greatest wattage for the amount of oxygen consumed.  Taking the time and effort to work on each of these three parts of your pedal stroke will pay big dividends on race day.

The Downstroke

Most of a cyclist’s power is derived from the downstroke.  Even a very smooth pedal stroke that lacks power in the downstroke is not efficient.

The quadriceps and the gluteus maximus muscles, two of the most powerful muscles in the body, both provide significant power on the downstroke.  One key to the downstroke is creating a long power zone by maximizing the period during which these muscles contract simultaneously.

Good cyclists lengthen their power zones at the top of the pedal stroke, applying pressure earlier in the stroke.  Less efficient cyclists try to lengthen their power zones at the bottom of the stroke, which only wastes energy.  We recommend concentrating on beginning the downstroke at 12 o’clock and driving diagonally down toward 3 o’clock.

Most of a cyclist’s power is released during the down-stroke.  This phase of the pedal-stroke, when performed properly, overlaps power output from hip extension (gluteus maximus and hamstrings) and knee extension (quadriceps).  Misunderstanding how power should be applied during the down-stroke causes many riders to lose this crucial overlap and overuse the hamstrings.

The second key to the downstroke is unloading pedal pressure before bottoming dead-center.  Since the downstroke is such a naturally dominant part of the pedal stroke, cyclists continue to push down even when the crankarm is at the very bottom in the 6 o’clock position.  Obviously this does not contribute to propulsion, but it does waste energy as well as causing muscular fatigue and saddle discomfort.  While even the best cyclists in the world fail to completely unload at bottom-dead-center, efficient cyclists come closer than less-skilled cyclists.  Working on this skill reduces wasted energy.  Transferring smoothly into the backstroke phase of the pedal stroke minimizes energy wasted at bottom-dead-center.  The key is attempting to begin the backstroke phase early.

Many cyclists begin the down-stroke late, at about 2 o’clock and direct their power directly downward.  This minimizes the overlap of the optimal torque ranges of hip extension and knee extension and may call the hamstrings into play excessively.  Since the quadriceps muscles are not activated properly, almost all the power must be produced by hip extension.  To accomplish this, the hamstrings must create a very forceful contraction.

In an ideal down-stroke, the power application begins early, at 12 o’clock, and is directed downward diagonally toward 3 o’clock.  This activates the quadriceps optimally and lengthens the overlap between the peak-torque production of knee extension and hip extension.  The quadriceps and gluteus maximus are the primary power producers and the hamstrings contract moderately.

The Backstroke

A moment of crisis arises during each pedal stroke when the pedals are at the 6 o’clock and 12 o’clock positions and neither leg is engaged in the downstroke.  While little power is generated at this point in the pedal stroke, creating as much as possible is critical, especially for climbing.  The goal is to provide just enough power to maintain momentum until the next downstroke begins.

Most cyclists don’t really have a backstroke phase, because their downstroke phase lasts too long.  We recommend trying to pull your heel back directly through the bottom bracket, beginning at 3 o’clock.  Obviously, this movement is impossible, since the crankarms don’t allow it, but attempting it triggers an early backstroke and minimizes wasted energy from pushing down at bottom-dead-center.  The downstroke is such a naturally dominant part of cycling that thinking in terms of prematurely pulling straight back actually produces a more circular down/back movement.  Attempting to pull back at 3 o’clock will not reduce the power of the latter stages of the downstroke.  The leg will, in fact, continue to produce downstroke power well beyond 3 o’clock.  However, attempting to begin the backstroke early prevents the downstroke from lasting too long and increases he efficiency of the stroke.

The backstroke is one area of the pedal-stroke where the hamstring muscles should be very active, because only knee flexion provides power in this range.  Relaxation during the ranges of the pedal stroke in which the hamstring muscles should not be used heavily (upstroke and downstroke) prevents fatigue and enables powerful backstroke contractions.

The primary pedal-stroke weakness of many riders is extending the down-stroke too long and starting the backstroke late.  This prevents the rider from unloading before bottom dead center and causes wasted energy pushing downward when the crankarm is moving directly backward.

The Upstroke

When you were first learning to ride a bike as a kid, what type of pedals did you use?  Like everyone else, you used platform pedals, which require different biomechanics than clipless pedals.  Have you ever made the effort to learn about the differences?

On platform pedals, how do you keep your right foot on the pedal while your left foot is pushing down?  You push down a little bit.  This is terribly inefficient, actually using energy and fatiguing the muscles to create negative power.  Since you began riding with clipless pedals, have you implemented changes in your power application?  Or, like many cyclists, even pretty good ones, do you still pedal the same way you did as a kid, only harder and longer?

At steady riding speeds, even the world’s best riders don’t create power on the upstroke.  The difference is that they do not create negative power, while most beginning and intermediate riders do.  The goal of the upstroke is to unload the pedal, lifting the weight of the leg, foot, and shoe off the pedal.  This allows all of the power generated by the opposite leg’s downstroke to be delivered to the rear wheel and provide propulsion.

Most cyclists create negative power during the upstroke, actually allowing the left leg’s downstroke to lift the weight of the right leg, foot, and shoe.  This negates some of the power generated by the downstroke. 

 

Efficient riders may actually produce significant upstroke power during periods of very hard pedaling, such as on very steep climbs.  During steady state riding, however, efficient riders simply lift the weight of their foot, leg, and shoe during the upstroke, but do not create power during this phase.  We call this “unloading”.  This aspect of pedaling is critical.  Consistent unloading on the upstroke is one significant difference between elite and intermediate riders.  Without correct unloading, the right and left legs actually fight against each other.

 

The movements of the upstroke are hip-flexion (lifting the knee) and knee-flexion (lifting the foot).  Since the hip-flexors are active only in this range of the pedal stroke, they should be the primary muscle contracting during this phase.  The hamstrings are very active during the backstroke and somewhat active during the downstroke, so efficient riders relax them during the upstroke.  Triathletes must also come off the bike with relatively fresh hamstrings in order to run well.

Attempting to pull up on the pedal through this phase places too much concentration on knee flexion and prevents hamstring relaxation.  The hip flexors, once trained, are extremely fatigue resistant.  They are only active for about 25% of the pedal stroke.  Obviously they can contract fairly powerfully without fatigue when their work to rest ratio is 1:3.

There are two keys to taking advantage of the fresh hip-flexor muscles and resting tired hamstring muscles during the upstroke phase.  The first is keeping your concentration on lifting the knee and not the heel or the foot.  If a cyclist lifts his knee powerfully, the foot and pedal will follow without contractions to bend the knee.  The second key is thinking of the upstroke as a diagonally upward and slightly forward movement, instead of an upward and backward movement.  Again, this places the emphasis on the hip-flexor muscles, which should be contracting, instead of the hamstrings, which should be relaxing.  When your pedal reaches the seven o’clock position, think of driving your knee up toward the handlebar.

this from Livestrong …

Cycling is an effective low-impact cardio workout, a popular sport and also a method of transportation for much of the world’s population. Whether you pedal a mountain bike up steep tracks, a track bike around a banked velodrome or a stationary bike in an indoor cycling class, the muscles that are used are much the same.

Hip Action

Much of the power for cycling comes from the hips. The gluteus maximus and hamstring muscles contract to drive your femur or thigh bone downward. Meanwhile, on your opposite leg, your hip flexors — the iliacus and psoas muscles — contract to pull your femur upward. Using pedal cleats can help these muscles work more efficiently and allow you to generate more power. In addition, the muscles on the inside and outside of your thigh — the adductors and abductors, respectively — work to keep your hips properly aligned.

Knee Action

Your knees work very hard during cycling. It is often the muscles that cross the knees that you can feel working the hardest on a long sprint or climb. On the front of your thigh, your quadriceps contract to extend your knee and drive the pedals downward. The most active of the four quadriceps muscles is the vastus medialis located just above and to the side of your knee cap, although your other quadriceps muscles are also very active. On the rear of your thigh, your hamstrings work to pull your foot backwards. Cleated pedals or toe-straps allow you to exert a greater force when pulling the pedals backward and help to increase power transference.

Ankle Action

Active pedaling, also called ankling, is a technique used by cyclists to maximize pedaling efficiency by utilizing the muscles in the lower leg as much as possible. Pressing your toes down through the pedals uses your posterior calf muscles — the gastrocnemius and soleus. As one leg is pushing down, the muscles on the front of your opposite shin — tibialis anterior — pulls your toes upward. By using your ankles as actively as possible, you can increase your force generation, albeit only slightly.

Upper Body

When you are cycling on flat roads at a moderate pace, your upper body does not play a very active role. This changes when you get up and out of your saddle to climb a steep hill or sprint. As you increase the pressure on the pedals, your upper body is called upon to counterbalance the efforts of your legs. The main upper-body muscles used in climbing and sprinting are your biceps, triceps and latissimus dorsi. Located on the front of your arm, back of your arm and side of your back respectively, these muscles generate downward force so you can develop increased pressure on your pedals. In addition, the muscles of your core work hard to stabilize your spine and ensure that the efforts of your upper body are transmitted efficiently to your legs.

A ride out to Helensburgh


Out to the father in laws for a summer BBQ today so I chose to cycle. Was trying to do a route out west then up to Loch Lomond then around over the back of Helensburgh to his house … got lost somewhere in Dunbarton and then just headed on west with all the cars.

Glasgow to Inverness
Passing through two National Parks – Loch Lomond & The Trossachs and Cairngorms, the Lochs & Glens (North) cycle route takes the cyclist through some of the most stunning scenery on the National Cycle Network. The route leaves Glasgow by following the River Clyde to Dumbarton and then heads to Inverness via Abefoyle, Callander, Killin, Pitlochry, Kingussie, Aviemore and Carrbridge. Highlights include the Glen Ogle viaduct on the railway path between Lochearnhead and Killin.

Every time I ride the Lynskey Cooper like today on a mixture of canal path gravel or potholed tar I am amazed how smooth it is ….

 

My time was quite quick as managed to beat the wife in the car who went to pick up my daughter then got stuck in traffic on the way out …..

speed breakdown according to RIDE with GPS import of Garmin GPS track

Now then would a wing suit for xmas be too much to ask for ….


The Red Bull Skydive Team performes a spectacular stunt high in the skies above Austria well worthy of any James Bond film.

How mental is this – i am sure the Blahnik glider my dad had wasn’t a patch on this …..


great article on the fat tie down under

A Therapy For Pain

I’ll be honest, I was really worried about taking the Mukluk on an overnighter… Especially given the distances we were looking at…

Turns out I had no cause for concern whatsoever… ‘Blue Bottle’ blew my mind this past weekend, and I can’t wait to get out for a proper expedition on her… And thanks to this weekend’s ride, I have a serious one in mind…

 

As usual, I invited a bunch of people on this ride… There were the usual suspects that I expected to jump on it, but this time proved different…

G-Force is a driver, and a recent convert to multiday riding after the Easter trip, so she was almost a given…

 

My old friend Oh-Two, creator and editor of the best bike blog on the net, Cycle Exif, shot my bikes for his blog and has been sniffing around this style of riding for…

View original post 988 more words

Selkirk MTB marathon review and thoughts


Went down on the Saturday afternoon and saw a lot of cars with road bikes heading in the opposite direction after the sportive. Event camping was  in Selkirk. After weeks of rain the weather forecast was true and good and after a cold clear night where the temp in the car got down to 1 degree C – the blue skies and May sun woke the riders up and set the tone of the rest of the day.

After the ride got off at ten o’clock with the Championship riders leading the field out it only took a little more than three and a quarter hours till the leading championship riders came back into the event village.

Go rohloff Go


Highlights of the race were the scenery in general and the sections of trail centre singletrack at Innerleithen, part of the renowned 7Stanes network. This part of the Scottish Borders is stunning, with rolling hills as far as the eye can see, gorse in full golden flower, and a superbly remote feeling. I do however have a gripe – being mid field some of the technical single track sections were really bogged down up to 20cm of mud and quite unrideable. Hate to think what the riders 300places back would have thought.

Feel that they could have had multi sections were another option was opened after the first 250 riders passed through … a minor gripe and just that i would have loved to ride it all instead of having to walk 3 sections.

always suspect something when a camera and puddle are this close together …
there was also a section where the 70km (actually 60km if I had another moan) came back to join the 45km lot and there was a hill that i didn’t see anyone ride – up to 22% according to the Garmin … again think the organisers should have picked a gentler route this late in the ride as it is the people on the 45km course that they really should encourage to come back and a 600m walk will not help them do that … Then a lovely descent – most people like me just riding down the side of the heather … a few of the full course 85km guys came flying past as well … then the water pic above – need to buy the Hires version for vanity reasons ….
Lastly the finish and another t-shirt which i said No to. The race must appeal to people that care about the environment and then they give out cheap horrible t-shirts that no-one with any fashion sense would wear out … they should copy the marathon and run events and give out small medals instead …
finished but hot
Must say that the greatest post finish bit was the routine …
1. WASH THE BIKE
2. WASH MYSELF
3. Get a physio
4. Eat … and Eat again. 4300calories leaves a dent.
ride profile

A sad day – toys being sold PT3 – Pace Retro RC36 Pro Forks MINT


SOLD

RC36 Pro Class
Titanium Nitride (TiNi) coated stanchions, carbon brace, magnesium canti studs. Eibach Coil springs – Yellow (soft), Red (Medium), Blue (Hard). 90mm travel (can be reduced to 70mm by removing 20mm secondary spring. Damping cartridge – oil weight can be changed to suit rider weight (Forks came as standard with medium springs and 5.0 weight oil)

 

A sad day – toys being sold pt2 – MINT steel Pinarello Arriba £750


My lovely mint 1996 Pinarello Arriba bought last year New Old Stock direct form Italy.

56cm frame

Campag Equiped

Mint condition – the orig tyres even have little rubber bits on still. Ridden 112 miles – I then changed stem (orig also include) but frame one side too big for me. Been keeping in case i grew some more 😉

Frame & Fork
Frame Construction TIG-welded steel
Frame Tubing Material Oria
Fork Brand & Model Pinarello
Fork Material Oria
Rear Shock Not applicable
Components
Component Group Campagnolo Mirage
Brakeset Campagnolo Mirage brakes, Campagnolo Mirage levers
Shift Levers Campagnolo Mirage Ergo
Front Derailleur Campagnolo Veloce, bottom-pull/braze-on
Rear Derailleur Campagnolo Mirage
Crankset Campagnolo Mirage, 32/42/52 teeth
Pedals Campagnolo Mirage (clipless)
Bottom Bracket Campagnolo Mirage, 111 mm spindle
BB Shell Width 70mm Italian
Rear Cogs 8-speed, 12 – 25 teeth
Chain Campagnolo Athena, 1/2 x 3/32″
Seatpost 27.2 mm diameter
Saddle Vetta SL
Handlebar ITM Super Europa 2
Handlebar Extensions Not applicable
Handlebar Stem ITM
Headset 1″ Campagnolo Mirage
Wheels
Hubs
Rims Campagnolo Roma 60, 32-hole
Tires 700 x 23c Vittoria Techno Twin
Spoke Brand Stainless steel
Spoke Nipples Brass nipples

A sad day: Toys being sold – KLEIN ATTITUDE with Pace Forks and 2 wheelsets


SOLD SOLD SOLD ….SNIFF

 

Moving house and storage is going down so we are selling bikes – 3 0f them at least.

First Up The Klein

Attitude Race Aliminium Frame S/M 2002 – only 2.8lbs in weight. (which cost £980 when new)

There are two wheel sets with the bike – A rolf Propel lightweight race set shed with bling Schwalbe Fat Franks. Gearing is 32:14 on this set.

offroad wheel set is a mix (rolf Propel UST at rear with 32:16 setup) this is shod in a Larsen TT UST tyre

Front is a Michelin XC – slightly chunkier front tyre for both a bit of shock and really great grip. Hub is Hope Pro3 and the rim is a MAVIC 819 tubeless.

Pace RC31 forks

Pace RC31 rigid forks are some of the lightest fromt MTB forks around.

Klein’s legendary paint job with very few nicks and cuts ….

Broken apart everything will fetch 800ish and more on flea bay (where it is heading next) but would prefer to sell as whole …. SOLD SOLD SOLD sniff ….

Why I became a roadie …. a film of types


why I became a roadie – nice series from big spesh …..

The first of a series of short films exploring the one word that seems to be missing from much of the bike industry – “why?”.

Dan Gronross has lived in British Columbia for eight years, and for the longest time rode mountain bikes exclusively, much of it in Whistler’s Bike Park, until a bad accident changed his outlook on the sport. Here’s WHY he rides road bikes now.